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circular channel 

,, 4w 
4ACL = 2nR, 

I, qw 
qECC = 2x(R, - Ri) 

where 

x= 1-exp(-0.48x 105/Pe) 

and 
Y= 1-exp(-0.98x10-‘/Pe) 

That this criterion is valid for tubular channels of various sizes 
is borne out to a certain extent by the size range considered 
in the development of the criterion. Let us now replace the 
annular channel by a hydraulically equivalent tubular chan- 
nel of diameter 2(R,-Ri). Keeping the heat input rate per 
unit channel length, qk, the same, Table Al gives the situ- 
ations ois-d-cis wall heat flux. Therefore 

da K--R, 
q&r R, 

Yt 

and 

We propose that the wall heat flux, qi, which appears in 
equation (Al) be replaced by q&--. Note that if the test 
section is tubular, q& is the actual wall heat flux imposed 
and equation (Al) remains the same. It, however, is modi- 
fied in the case of annular geometry 
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Sub NVo = [(455k,/D,)X+ (O.O065GC,) Y] 
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%vAC, 
= yj[(455k,,/D,)X+(0.0065GC,) Y] (A2) 
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wherej = i or o. 
Note that y, > 1 causes the predicted NVG location to 

move downstream in the channel (with respect to the location 
where heating begins) provided NVG does not occur at the 
beginning of the heating in both cases. On the other hand, 
y, < 1 causes the predicted NVG location to move upstream. 

The preceding modification suggested for high Peclet num- 
ber (x 10’ or higher) flows is tentative since its verification 
is rather limited. However, it appears to be reasonable to 
propose that y,(j = i or o) be adopted as the upper or lower 
(as appropriate) limit of a correction parameter Bj such that 

1 < Bi <Y, (ifyi > 1) 

y, < 8, < 1 (ify, < 1) 

and 

1 >pO>yO. 

The optimum value of 8, (within the above ranges) for a 
particular annular channel should be decided upon by flow 
visualization when feasible. When this is not possible, 
indirect optimization via comparison of modal-calculated 
axial vapor fraction profiles with corresponding exper- 
imental data could be used. For our test section, we estimated 
the following value of /I, to be suitable on the basis of flow 
visualization : 

/I, = 1.25kO.05. 

In the calculational result of Tables 1 and 2, p, = 1.25 has 
been used. 
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INTRODUCTION 

A VERY simple method for studying transient diffusive 
phenomena in multilayer media was proposed by Gosse [l]. 
This approach is extended to periodic external conditions 
by using developments on an orthogonal complete base of 
rectangular functions called ‘Walsh functions’. We take 
advantage of this note to emphasize the interest of the prob- 
lem both for practical applications and for the methods used. 
The study of the transport phenomena in the micro- 
circulation is then pointed out as a particular example of 
the possible transfer of methods by means of analogies. 

The main features of the transient diffusive phenomena in 
heterogeneous media are both dependent on the nature of the 
constitutive materials and on their geometrical repartition. 
Thus, two classes of media can be taken into consideration : 
(a) composite materials which are constituted of a solid 
dispersed phase of regular or irregular shape elements ; (b) 
media made up of successive ajoining layers of different 
materials. 

Owing to the possible applications, the study of the 
diffusion in multilayer media occurs in situations where the 
system is submitted (at least on one external face) to periodic 

limiting conditions: as an example, in the field of thermal 
study, we use here as a point of reference, the alternate watch 
and fire temperature or the day-night succession (thermal 
analysis of stratified soils, thermal energy storage, isolating 
walls, etc.). 

According to the preceding statement, the problem gives 
the opportunity to develop methods of resolution allowing, 
by means of analogies, to start on any other question defined 
in a similar way. From this point of view, the development 
of models for the study of transport phenomena in the 
microcirculation is mentioned here [2]. In the microvascular 
bed, blood flow is mainly controlled by viscous forces. Thus, 
it can be shown [3] that the intravascular pressure is a solution 
of a diffusion equation with a diffusivity as a function of the 
blood viscosity and characteristic parameters of the vessel : 
dimensions and Young’s modulus. The observation in situ 
of microcirculatory networks (double tree vascularization of 
vessels with decreasing and increasing diameters) leads to 
postulate [3] a representation consisting of a number of levels 
connected in series, each level being characterized by con- 
stant and uniform parameters (same geometric parameters, 
viscosity and Young’s modulus). Moreover, the equation for 
the blood flow continuity between two levels [3] is analogous 
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NOMENCLATURE 

A, B coefficients of development in equation (3) 
a diffusivity 
c heat capacity 
e thickness 
T temperature 
X longitudinal coordinate. 

Greek symbols 

i 

Walsh coefficient in equation (9) 
dimensionless coefficient in equation (4) 
product of matrices defined by equation (6) 

E, 9, r, x terms of matrix (6) 

eigenvalue 
; temperature 
I thermal conductivity 
V, 6 Walsh coefficients in equation (13) 

period 

; heat flux. 

Subscripts 

iJ related to one slab 
k order of an elementary solution 
n total number of slabs 

P order of Walsh function. 

to the equation of continuity for the heat flux between two 
slabs for the thermal problem. At least, it is clear that a 
periodic limiting condition is to be applied at the entrance 
of such a multilayer system as a result of the persistence of 
the cardiac pulse. 

The problem of the transient heat conduction in a multi- 
layer medium has been solved by Gosse [l] with a simple 
and original method. The aim of the present note is to add 
a complement to this analytical approach which enables one 
to solve the problem for any periodic limiting conditions. 
We will briefly recall the essential points of the method 
suggested by Gosse, then we will show how the solutions 
obtained, for imposed steps of temperature, on an external 
face, can be transformed to obtain the solution for any 
periodic limiting condition of temperature. 

DESCRIPTION OF THE METHOD 

We consider a multilayer medium made up of n adjacent 
slabs with constant and uniform parameters: density pz. 
thermal conductivity A,, heat capacity C,, diffusivity u,, thick- 
ness e,. For a slice i. the temperature T, is a solution of the 
diffusion equation 

We suppose both the temperature and the heat flux to be 
continuous at each interface (no contact resistances). 

The problem can be greatly simplified by using a particular 
dimensional transformation. Taking the first slab (i = 1) as a 
reference 

(2) 

the asterisk * will be omitted for simplification. 
By using the separation of variables method. one can 

obtain an elementary solution of order k in the form 

Tck = [A,, cos &IS,)+ B,, sin (P~.x,)] emPl’ (3) 

& = B!P(,. ]A,, sin (Pa-v,)- & cos (w-,)1 em”;’ (4) 

where 4, is the heat flux and 

Equation (2) gives a unique reduced time for all the slabs of 
the wall. Then, by using the conditions of continuity at each 
interface, the solution of order k in the slab i can be obtained 
in the form 

l-k = ri I cc-s (w, 1 
(6) 

’ AD, sin (w,) 

When imposing constant temperatures on the external faces, 
the set of eigenvalues pk is the solution of the transcendental 
equation 

Vnk = 0. (7) 

By using the aforementioned procedure it becomes easy to 
study the thermal behaviour of a multilayer wall submitted 
on one face to a series of periodic sequences of temperature 
T,(e,, t) [4]. The solution in slab i is 

T,(*,, T) = C T,,(s, I). 

With a suitable choice of the series of sequences, it is then 
possible to identify T,(e., f) with one term of the sequential 
analysis of a signal of temperature (with period T) on a 
complete orthogonal set of rectangular functions. The Walsh 
functions [5] are a convenient set for such a development 

T,(e,, 1) = LX,, Wal @. I) (9) 

where aP is the coefficient of the development of order p. p is 
the order of the Walsh function Wal @. t). 

Solution (8) can be written in the form 

7;” (x,, 2) = c 7;” (x,, 1). (10) 
k 

Let B,(t) be the periodic signal of temperature applied on 
one external face of the system 

in accordance with the principle of superposition, the general 
solution in slab i can be written in the form 

B,(s,, f) = c r(s,. 0. 
P 

(12) 

By analogy with the Fourier developments, the Walsh func- 
tions are divided into two groups noted ‘Cal’ and ‘Sal’ 
according to their parity with respect to the half period (5/2). 
Then 

O,(f) = vO Wal(0, f) + 1 [v, Cal (p, f) + 6, Sal (p. f)] 
P 

(13) 

; o O,(t)dr, ,\ =’ 
s 

T 7 

vg = ~ 

s 5 0 
e,(f) Cal (p, t) dt ; 

6, = k 
s 

T 
o O,(t) Sal @, t) dt. 

As an example, we have shown in Fig. 1 the first four Walsh 
functions. 
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FIG. I, The first four Walsh functions. 

The sequential development of the imposed condition on 
the outer face is clearly liable to a simple physical interpret- 
ation : a series of sequences of temperature of given duration. 
Thus the sequential analysis appears to be a suitable tool for 
the study of the diffusive phenomena (the frequency Fourier 
analysis remaining the essential method for the study of the 
oscillatory phenomena). 

The suggested approach provides a powerful method for 
the study and the simulation of the diffusive transport 
phenomena in multilayer media [6] particularly when numer- 
ous slabs are involved with parameters of different orders of 
magnitude. The whole procedure leads to analytical solutions 
which appear here to be more precise and easier to obtain, 
with a computer, than when using a finite difference pro- 
cedure because of the restriction on the time step as a function 
of the mesh size. In fact, the method can only be limited by 
the computer itself. The greatest limitation comes from the 
rounding error, which can become important when a great 
number of terms is necessary for the reconstruction of the 
solution at a given point of the medium. In such a case 
(rapidly varying Iimiting conditions) the computing time 
could become important and additional memories or special 
programming procedures would be necessary. 
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